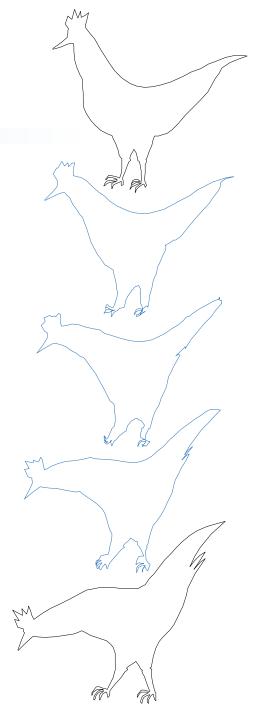
Particle Systems

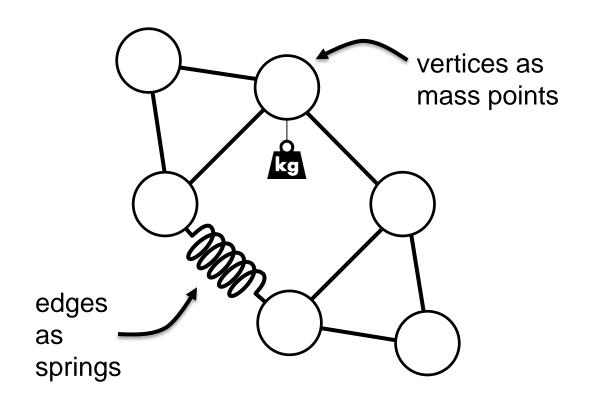
CS418 Interactive Computer Graphics
John C. Hart

Flexible Body Animation

- Need same number and configuration of vertices at key frames for intervening frames to make sense
- Need to have correspondences between two collections of vertices
- Vertices → Particles
- Edges \rightarrow Springs
- Moving a vertex drags and pushes other vertices into position from tension and compression on the springs

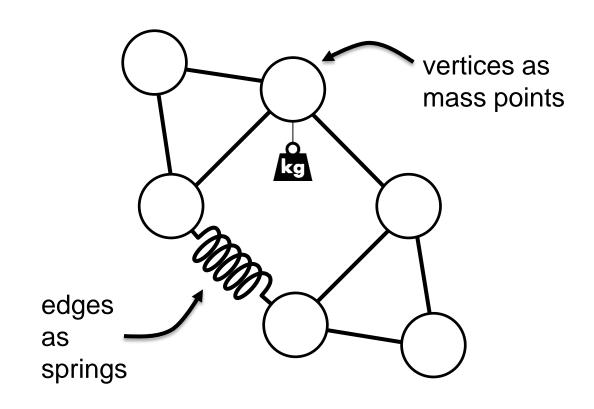


Animate shapes by kinematic simulation



Animate shapes by kinematic simulation

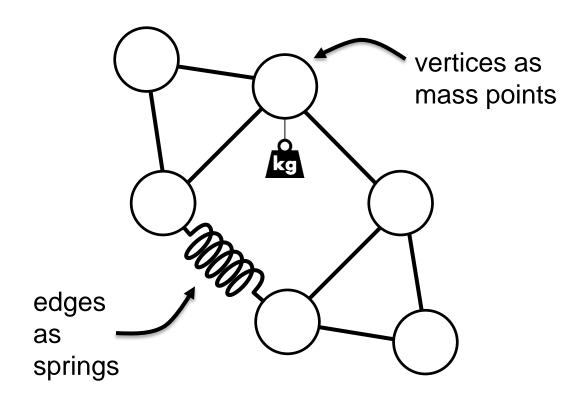
- Newton: $\mathbf{F} = m\mathbf{a}$



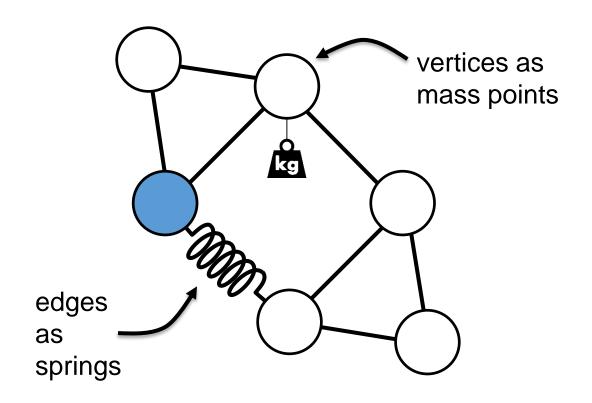
Animate shapes by kinematic simulation

– Newton: $\mathbf{F} = m\mathbf{a}$

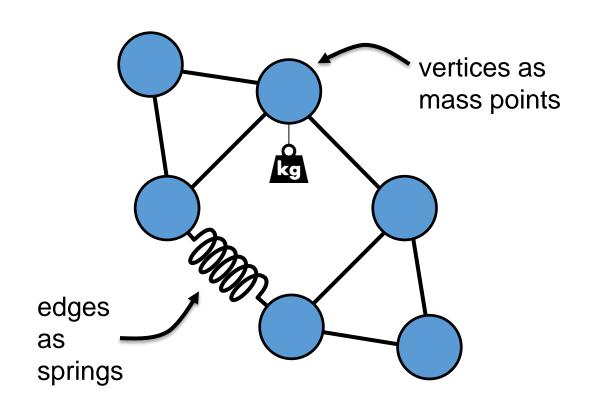
- Aristotle: $\mathbf{F} = m\mathbf{v}$



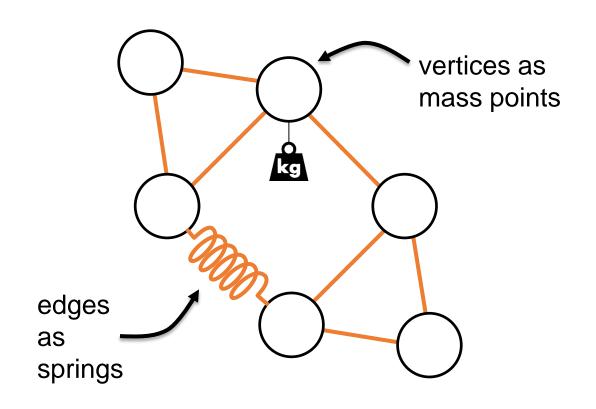
- Animate shapes by kinematic simulation
 - Newton: $\mathbf{F} = m\mathbf{a}$
 - Aristotle: $\mathbf{F} = m\mathbf{v}$
- Particles
 - Position: $\mathbf{x} = (x, y, z, ...)$
 - ... over time: $\mathbf{x}(t) = (x(t), y(t), z(t), ...)$
 - Velocity: $\mathbf{v} = \mathbf{x}' = d\mathbf{x}dt = f(\mathbf{x}, t)$



- Animate shapes by kinematic simulation
 - Newton: $\mathbf{F} = m\mathbf{a}$
 - Aristotle: $\mathbf{F} = m\mathbf{v}$
- Particles
 - Position: $\mathbf{x} = (x, y, z, ...)$
 - ... over time: $\mathbf{x}(t) = (x(t), y(t), z(t), ...)$
 - Velocity: $\mathbf{v} = \mathbf{x}' = d\mathbf{x}dt = f(\mathbf{x}, t)$



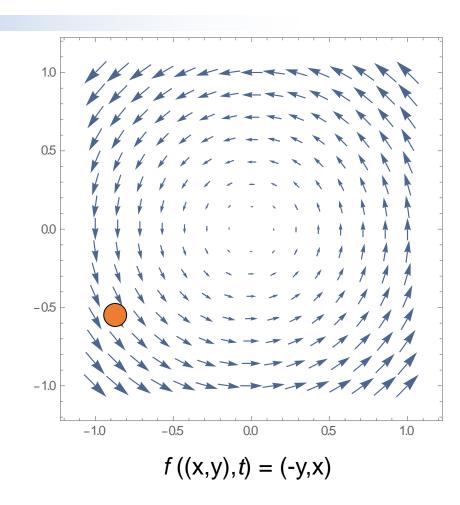
- Animate shapes by kinematic simulation
 - Newton: $\mathbf{F} = m\mathbf{a}$
 - Aristotle: $\mathbf{F} = m\mathbf{v}$
- Particles
 - Position: $\mathbf{x} = (x, y, z, ...)$
 - ... over time: $\mathbf{x}(t) = (x(t), y(t), z(t), ...)$
 - Velocity: $\mathbf{v} = \mathbf{x}' = d\mathbf{x}dt = f(\mathbf{x}, t)$
- Shape described by x
- Behavior described by f()



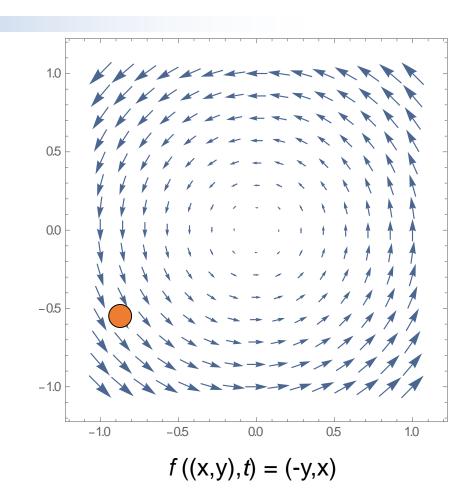
• Moving point: $\mathbf{x}(t)$

- Moving point: $\mathbf{x}(t)$
- Velocity: x'

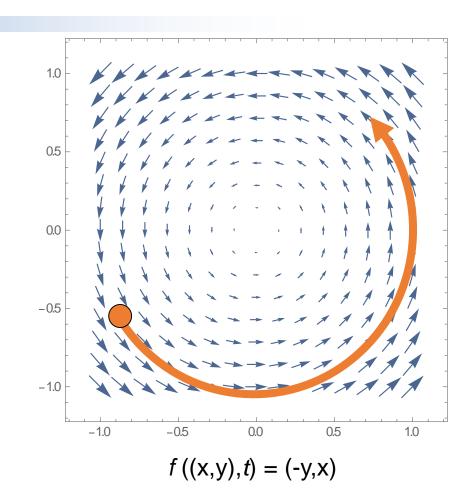
- Moving point: $\mathbf{x}(t)$
- Velocity: $\mathbf{x}' = f(\mathbf{x},t)$



- Moving point: $\mathbf{x}(t)$
- Velocity: $\mathbf{x}' = f(\mathbf{x},t)$
- Initial value problem
 - Given position $\mathbf{x}(0)$
 - Where is $\mathbf{x}(t)$?

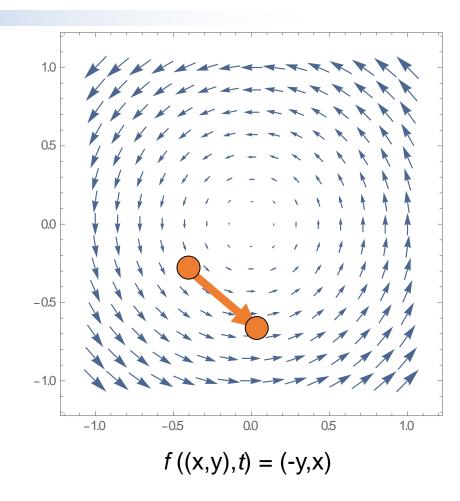


- Moving point: $\mathbf{x}(t)$
- Velocity: $\mathbf{x}' = f(\mathbf{x},t)$
- Initial value problem
 - Given position $\mathbf{x}(0)$
 - Where is $\mathbf{x}(t)$?



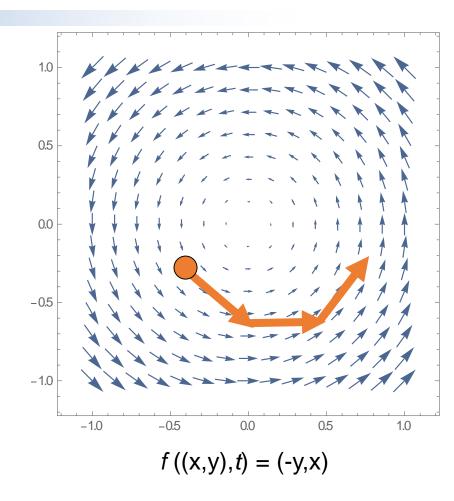
Euler Integration

$$\mathbf{x}(t + \Delta t) \approx \mathbf{x}(t) + \Delta t f(\mathbf{x}(t),t)$$



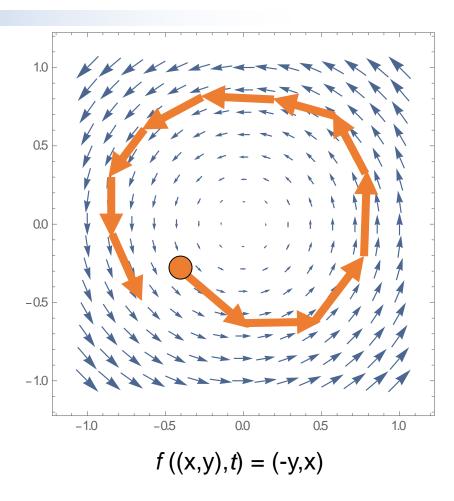
Euler Integration

$$\mathbf{x}(t + \Delta t) \approx \mathbf{x}(t) + \Delta t f(\mathbf{x}(t),t)$$

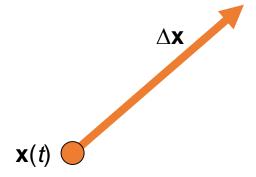


Euler Integration

$$\mathbf{x}(t + \Delta t) \approx \mathbf{x}(t) + \Delta t f(\mathbf{x}(t),t)$$

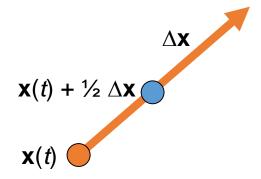


$$\Delta \mathbf{x} = \Delta t f(\mathbf{x}(t), t)$$



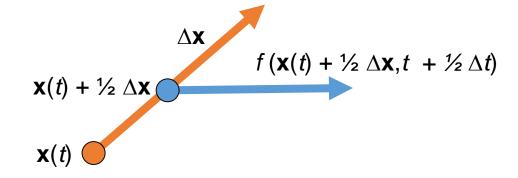
$$\mathbf{x}(t + \Delta t) \approx \mathbf{x}(t) + \Delta t f(\mathbf{x}(t) + \frac{1}{2}\Delta \mathbf{x}, t + \frac{1}{2}\Delta t)$$

$$\Delta \mathbf{x} = \Delta t f(\mathbf{x}(t), t)$$



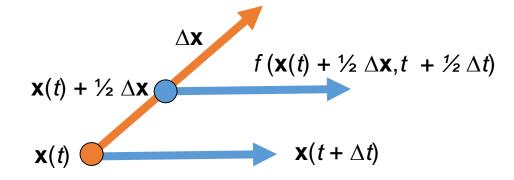
$$\mathbf{x}(t + \Delta t) \approx \mathbf{x}(t) + \Delta t f(\mathbf{x}(t) + \frac{1}{2} \Delta \mathbf{x}, t + \frac{1}{2} \Delta t)$$

$$\Delta \mathbf{x} = \Delta t f(\mathbf{x}(t), t)$$



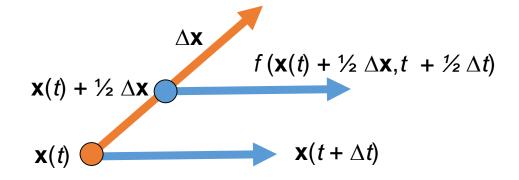
$$\mathbf{x}(t + \Delta t) \approx \mathbf{x}(t) + \Delta t f(\mathbf{x}(t) + \frac{1}{2} \Delta \mathbf{x}, t + \frac{1}{2} \Delta t)$$

$$\Delta \mathbf{x} = \Delta t f(\mathbf{x}(t), t)$$



$$\mathbf{x}(t + \Delta t) \approx \mathbf{x}(t) + \Delta t f(\mathbf{x}(t) + \frac{1}{2} \Delta \mathbf{x}, t + \frac{1}{2} \Delta t)$$

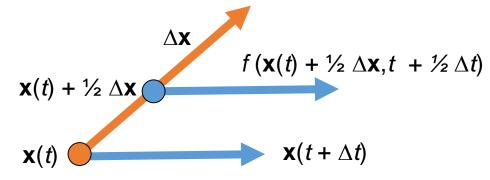
$$\Delta \mathbf{x} = \Delta t f(\mathbf{x}(t), t)$$



$$\mathbf{x}(t + \Delta t) \approx \mathbf{x}(t) + \Delta t f(\mathbf{x}(t) + \frac{1}{2} \Delta \mathbf{x}, t + \frac{1}{2} \Delta t)$$

• Also higher order Runge-Kutta methods

$$\Delta \mathbf{x} = \Delta t f(\mathbf{x}(t), t)$$

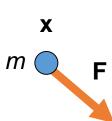


$$\mathbf{x}(t + \Delta t) \approx \mathbf{x}(t) + \Delta t f(\mathbf{x}(t) + \frac{1}{2} \Delta \mathbf{x}, t + \frac{1}{2} \Delta t)$$

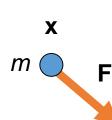
- Also higher order Runge-Kutta methods
- Need to be able to evaluate $f(\mathbf{x},t)$ anywhere and anytime

• Position: $\mathbf{x} = (x, y, z, ...)$

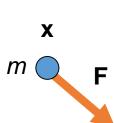
- Position: $\mathbf{x} = (x, y, z, ...)$
- Velocity: $\mathbf{v} = \mathbf{x}' = d\mathbf{x}dt$
- Acceleration: $\mathbf{a} = \mathbf{x}'' = d\mathbf{v}dt$
- Newton: $\mathbf{F} = m\mathbf{a}$



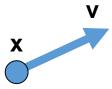
- Position: $\mathbf{x} = (x, y, z, ...)$
- Velocity: $\mathbf{v} = \mathbf{x}' = d\mathbf{x}dt$
- Acceleration: $\mathbf{a} = \mathbf{x}'' = d\mathbf{v}dt$
- Newton: $\mathbf{F} = m\mathbf{a}$
- Need to integrate $\mathbf{x}'' = \mathbf{F}/m = f(\mathbf{x}, \mathbf{x}', t)$
- Second order differential equation



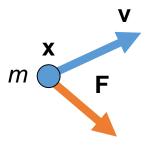
- Position: $\mathbf{x} = (x, y, z, \dots)$
- Velocity: $\mathbf{v} = \mathbf{x}' = d\mathbf{x}dt$
- Acceleration: $\mathbf{a} = \mathbf{x}'' = d\mathbf{v}dt$
- Newton: $\mathbf{F} = m\mathbf{a}$
- Need to integrate $\mathbf{x}'' = \mathbf{F}/m = f(\mathbf{x}, \mathbf{x}', t)$
- Second order differential equation
- We don't know how to solve a second order differential equation



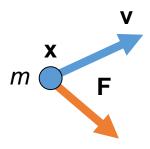
• Position, velocity: $\mathbf{x} = (\mathbf{p}, \mathbf{v}) = (px, py, pz, vx, vy, vz)$



- Position, velocity: $\mathbf{x} = (\mathbf{p}, \mathbf{v}) = (px, py, pz, vx, vy, vz)$
- Derivative: $\mathbf{x'} = d\mathbf{x}dt = (\mathbf{p'}, \mathbf{v'}) = (\mathbf{v}, \mathbf{a})$

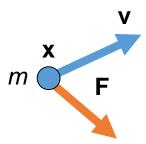


- Position, velocity: $\mathbf{x} = (\mathbf{p}, \mathbf{v}) = (px, py, pz, vx, vy, vz)$
- Derivative: $\mathbf{x'} = d\mathbf{x}dt = (\mathbf{p'}, \mathbf{v'}) = (\mathbf{v}, \mathbf{a})$
- Need to integrate $\mathbf{x}' = f(\mathbf{x}, t)$



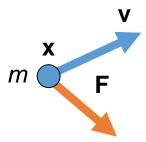
- Position, velocity: $\mathbf{x} = (\mathbf{p}, \mathbf{v}) = (px, py, pz, vx, vy, vz)$
- Derivative: $\mathbf{x'} = d\mathbf{x}dt = (\mathbf{p'}, \mathbf{v'}) = (\mathbf{v}, \mathbf{a})$
- Need to integrate $\mathbf{x}' = f(\mathbf{x}, t)$

$$\mathbf{x'} = f((\mathbf{p}, \mathbf{v}), \mathbf{t})$$



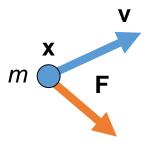
- Position, velocity: $\mathbf{x} = (\mathbf{p}, \mathbf{v}) = (px, py, pz, vx, vy, vz)$
- Derivative: $\mathbf{x'} = d\mathbf{x}dt = (\mathbf{p'}, \mathbf{v'}) = (\mathbf{v}, \mathbf{a})$
- Need to integrate $\mathbf{x}' = f(\mathbf{x}, t)$

$$x' = f((p,v), t) = (p',v')$$



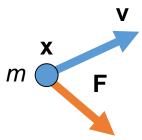
- Position, velocity: $\mathbf{x} = (\mathbf{p}, \mathbf{v}) = (px, py, pz, vx, vy, vz)$
- Derivative: $\mathbf{x'} = d\mathbf{x}dt = (\mathbf{p'}, \mathbf{v'}) = (\mathbf{v}, \mathbf{a})$
- Need to integrate $\mathbf{x}' = f(\mathbf{x}, t)$

$$x' = f((p,v), t) = (p',v') = (v,a)$$



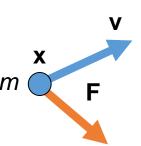
- Position, velocity: $\mathbf{x} = (\mathbf{p}, \mathbf{v}) = (px, py, pz, vx, vy, vz)$
- Derivative: $\mathbf{x'} = d\mathbf{x}dt = (\mathbf{p'}, \mathbf{v'}) = (\mathbf{v}, \mathbf{a})$
- Need to integrate $\mathbf{x}' = f(\mathbf{x}, t)$

$$x' = f((p,v), t) = (p',v') = (v,a) = (v, F/m)$$



Data Structures

- Particle: [**p**, **v**, **F**, *m*]
 - p: particle position
 - v: particle velocity
 - **F**: Force accumulator
 - *m*: particle mass



Data Structures

- Particle: [**p**, **v**, **F**, *m*]
 - p: particle position
 - v: particle velocity
 - **F**: Force accumulator
 - m: particle mass

- State: $\mathbf{x} = (\mathbf{p}, \mathbf{v})$
- Derivative: $\mathbf{x}' = (\mathbf{v}, \mathbf{F}/m)$

x(t) **F**

E.g. Euler:
$$\mathbf{x}(t + \Delta t) \approx \mathbf{x}(t) + \Delta t f(\mathbf{x}(t),t)$$

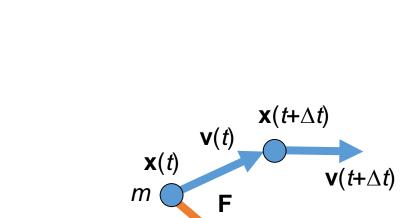
Data Structures

- Particle: [**p**, **v**, **F**, *m*]
 - p: particle position
 - v: particle velocity
 - **F**: Force accumulator
 - m: particle mass

- State: $\mathbf{x} = (\mathbf{p}, \mathbf{v})$
- Derivative: $\mathbf{x}' = (\mathbf{v}, \mathbf{F}/m)$

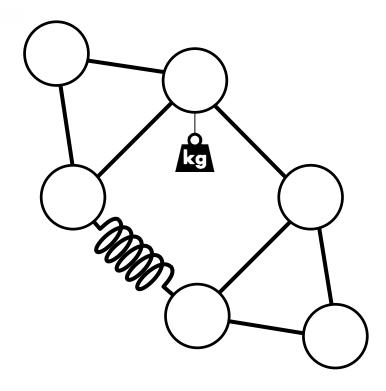
E.g. Euler:
$$\mathbf{p}(t + \Delta t) \approx \mathbf{p}(t) + \Delta t \mathbf{v}(t)$$

 $\mathbf{v}(t + \Delta t) \approx \mathbf{v}(t) + \Delta t \mathbf{F}/m$



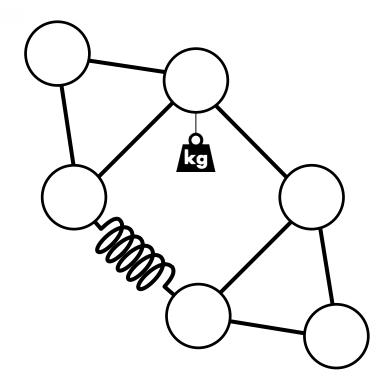
Particle System

• Particle array: $[\mathbf{p}_i, \mathbf{v}_i, \mathbf{F}_i, m_i]$



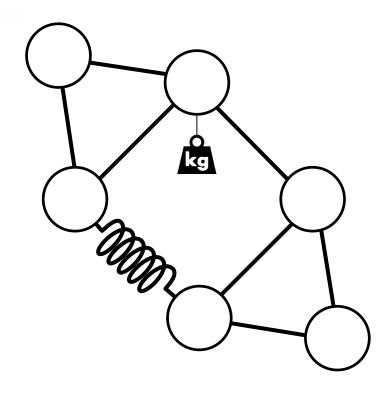
Particle System

- Particle array: $[\mathbf{p}_i, \mathbf{v}_i, \mathbf{F}_i, m_i]$
- Solver:
 - State: $\mathbf{x} = (\mathbf{p}_0, \mathbf{v}_0, \mathbf{p}_1, \mathbf{v}_1, \mathbf{p}_2, \mathbf{v}_2, \dots)$
 - Derivative: $\mathbf{x}' = (\mathbf{v}_0, \mathbf{F}_0/m_0, \ldots)$

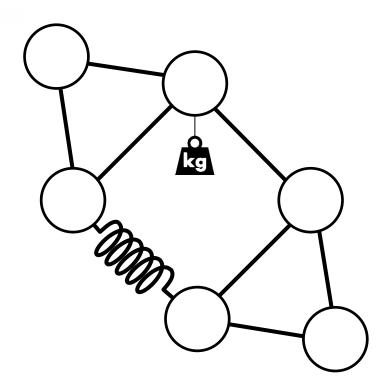


Particle System

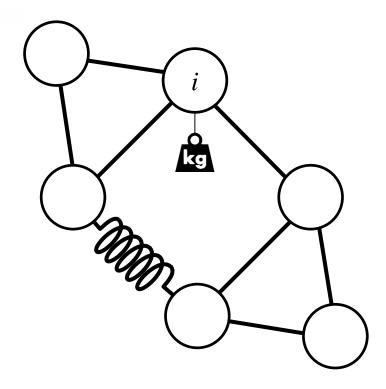
- Particle array: $[\mathbf{p}_i, \mathbf{v}_i, \mathbf{F}_i, m_i]$
- Solver:
 - State: $\mathbf{x} = (\mathbf{p}_0, \mathbf{v}_0, \mathbf{p}_1, \mathbf{v}_1, \mathbf{p}_2, \mathbf{v}_2, \dots)$
 - Derivative: $\mathbf{x}' = (\mathbf{v}_0, \mathbf{F}_0/m_0, \ldots)$
- Derivative evaluation
 - For each particle i: $\mathbf{F}_i = 0$
 - For each force: add to appropriate \mathbf{F}_i
 - For each particle *i*: $\mathbf{p}_i' = \mathbf{v}_i$, $\mathbf{v}_i' = \mathbf{F}_i/m_i$



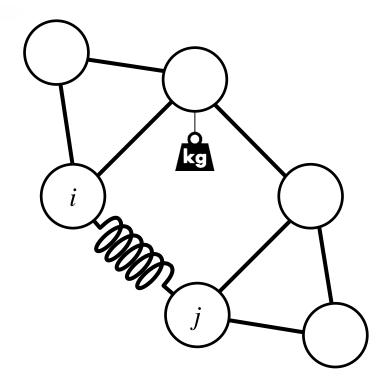
- Derivative evaluation
 - For each particle *i*: $\mathbf{F}_i = 0$
 - For each force: add to appropriate \mathbf{F}_i
 - For each particle *i*: $\mathbf{p}_i' = \mathbf{v}_i$, $\mathbf{v}_i' = \mathbf{F}_i/m_i$



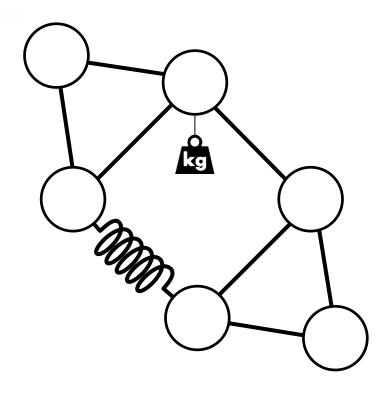
- Derivative evaluation
 - For each particle *i*: $\mathbf{F}_i = 0$
 - For each force: add to appropriate \mathbf{F}_i
 - For each particle *i*: $\mathbf{p}_i' = \mathbf{v}_i$, $\mathbf{v}_i' = \mathbf{F}_i/m_i$
- Gravity: $\mathbf{F}_i += m_i * \mathbf{G}$



- Derivative evaluation
 - For each particle i: $\mathbf{F}_i = 0$
 - For each force: add to appropriate \mathbf{F}_i
 - For each particle *i*: $\mathbf{p}_i' = \mathbf{v}_i$, $\mathbf{v}_i' = \mathbf{F}_i/m_i$
- Gravity: $\mathbf{F}_i += m_i * \mathbf{G}$
- Spring: $\mathbf{F}_i += k*(||\mathbf{p}_j \mathbf{p}_i|| r)*(\mathbf{p}_j \mathbf{p}_i)/||\mathbf{p}_j \mathbf{p}_i||$ \mathbf{F}_j -= same



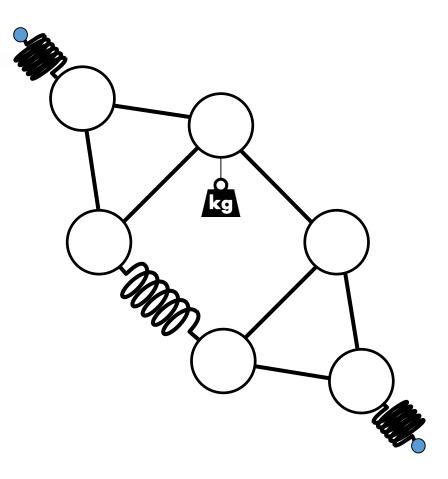
- Derivative evaluation
 - For each particle i: $\mathbf{F}_i = 0$
 - For each force: add to appropriate \mathbf{F}_i
 - For each particle *i*: $\mathbf{p}_i' = \mathbf{v}_i$, $\mathbf{v}_i' = \mathbf{F}_i/m_i$
- Gravity: $\mathbf{F}_i += m_i * \mathbf{G}$
- Spring: $\mathbf{F}_i += k^*(||\mathbf{p}_j \mathbf{p}_i|| r)^*(\mathbf{p}_j \mathbf{p}_i)/||\mathbf{p}_j \mathbf{p}_i||$ $\mathbf{F}_j -= \text{same}$
- Damping: $\mathbf{F}_i = k^* \mathbf{v}_i$



Useful Interaction Forces

Nail

- Spring between particle and fixed position
- Force only applied to the one particle at the end of the spring
- Keeps things from falling off the bottom of the screen



Useful Interaction Forces

Nail

- Spring between particle and fixed position
- Force only applied to the one particle at the end of the spring
- Keeps things from falling off the bottom of the screen
- Mouse Spring
 - Spring between particle and mouse position
 - More stable than moving a particle directly to mouse position
 - Clicking the mouse attaches spring with zero rest length to nearest particle

